Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Ning Yang, Jun Li and Feng-Xing Zhang*

Department of Chemistry, Northwest University, Xian, Shaanxi 710069, People's Republic of China

Correspondence e-mail: zhangfx@nwu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.146$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(2,2'-biimidazole)nickel(II) phthalate

A novel three-dimensional hydrogen-bonded complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{3}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$, was synthesized. Each Ni atom is six-coordinate, in a pseudo-octahedral geometry, formed by six N atoms of three chelating biimidazole ligands. It has a three-dimensional network structure, formed by extensive hydrogen bonds between $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \text { biim }\right)_{3}\right]^{2+}$ cations and phthalate anions. There are two cations and two anions in the asymmetric unit.

Comment

In recent years, the controlled assembly of molecular building blocks to give three-dimensional nets connected via coordinate, hydrogen or covalent bonds, has been an important area for the development of molecular-based materials science (Ferey, 2001; Moulton \& Zaworotko, 2002). 2,2'-Biimidazole ($\mathrm{H}_{2} \mathrm{biim}$) possesses dual properties, namely coordination to metal centres and the ability to act as a donor in hydrogenbonding interactions (Fortin \& Beauchamp, 2001; Sang et al., 2002; Atencio et al., 2004).

(I)

The structure of the title compound, (I), consists of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \text { biim }\right)_{3}\right]^{2+}$ cations hydrogen bonded to phthalate dianions (Fig. 1). There are two cations and two anions in the asymmetric unit. The coordination geometry of the nickel(II) centres can be described as distorted octahedral, formed by six N atoms from three chelating H_{2} biim ligands. The main distortion results from the small $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ bite angles of the H_{2} biim ligands, viz. $78.57(8)-79.31(8)^{\circ}$ for $\left[\mathrm{Ni} 1\left(\mathrm{H}_{2} \text { biim }\right)_{3}\right]^{2+}$ and $79.07(8)-79.57(8)^{\circ}$ for $\left[\mathrm{Ni} 2\left(\mathrm{H}_{2} \text { biim }\right)_{3}\right]^{2+}$ (Table 1). The $\mathrm{Ni}-\mathrm{N}$ bond lengths are in the range 2.072 (2)-2.137 (2) \AA. A similarly distorted octahedron has been reported previously for the analogous complex $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{Hbiim})_{3}\right]\left(\mathrm{NMe}_{4}\right)\left(\mathrm{NMe}_{4}\right.$ is tetramethylammonium), in which the $\mathrm{Ni}-\mathrm{N}$ bond lengths are in the range 1.96 (3)-2.19 (2) \AA (Tadokoro et al., 1999).

Each $\left[\mathrm{Ni} 1\left(\mathrm{H}_{2} \mathrm{bim}\right)_{3}\right]^{2+}$ complex cation is connected to three phthalate dianions through seven $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds,

View of the asymmetric unit of the title complex with the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the hydrogen-bonded interactions (turquoise lines) in the title complex. H atoms have been omitted.
with N-O distances of 2.693 (3)-3.028 (3) \AA (Table 2). In the hydrogen-bond environment of Ni 2 , however, each $\left[\mathrm{Ni} 2\left(\mathrm{H}_{2} \text { biim }\right)_{3}\right]^{2+}$ complex cation is connected through six strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\mathrm{N}-\mathrm{O}$ distances of 2.674 (3) -2.788 (3) \AA, to four phthalate dianions (Fig. 2). Through this complicated and dense three-dimensional network of hydrogen bonds, the crystal packing is formed (Fig. 3).

Experimental

All reagents were of AR grade from commercial sources and used without further purification. Biimidazole was prepared following a slightly modified procedure (Ramirez et al., 2002) of Fieselmann et al.
(1978). $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \quad(124.43 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$, phthalic acid ($83.074 \mathrm{mg}, 0.5 \mathrm{mmol}$) and H_{2} biim ($67.07 \mathrm{mg}, 0.5 \mathrm{mmol}$) in a 1:1:1 molar ratio were added directly as solids suspended in deionized water (10 ml); after the mixture was stirred at room temperature for 30 min , a purple precipitate was obtained. The pH was adjusted to 7.0 using aqueous KOH solution. The mixture was then placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 4 d . The reaction vessel was allowed to cool to room temperature slowly, and purple crystals of the title complex were obtained and collected by filtration and washed with water (yield 60%).

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{3}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)$
$M_{r}=625.27$
Monoclinic, $P 2_{1} / c$
$a=23.5242(18) \AA$
$b=11.1168(9) \AA$
$c=23.8578(19) \AA$
$\beta=115.325(1)^{\circ} \AA$
$V=5639.5(8) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.473 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 7467 \\
& \quad \text { reflections } \\
& \theta=2.4-24.2^{\circ} \\
& \mu=0.74 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, purple } \\
& 0.49 \times 0.19 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.712, T_{\text {max }}=0.897$
34502 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.146$
$S=1.05$
13575 reflections
811 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& 13575 \text { independent reflections } \\
& 9366 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.029 \\
& \theta_{\max }=28.3^{\circ} \\
& h=-15 \rightarrow 30 \\
& k=-14 \rightarrow 14 \\
& l=-31 \rightarrow 27 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.086 P)^{2}\right. \\
& \quad+0.3746 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.052 \\
& \Delta \rho_{\max }=0.85 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

Ni1-N11	$2.072(2)$	$\mathrm{Ni} 2-\mathrm{N} 19$	$2.076(2)$
Ni1-N5	$2.090(2)$	$\mathrm{Ni} 2-\mathrm{N} 21$	$2.088(2)$
Ni1-N3	$2.102(2)$	$\mathrm{Ni} 2-\mathrm{N} 23$	$2.097(2)$
Ni1-N9	$2.119(2)$	$\mathrm{Ni} 2-\mathrm{N} 13$	$2.098(2)$
Ni1-N1	$2.123(2)$	$\mathrm{Ni} 2-\mathrm{N} 17$	$2.107(2)$
Ni1-N7	$2.137(2)$	$\mathrm{Ni} 2-\mathrm{N} 15$	$2.124(2)$
N11-Ni1-N5	$169.97(8)$	$\mathrm{N} 19-\mathrm{Ni} 2-\mathrm{N} 21$	$92.13(8)$
N11-Ni1-N3	$88.58(8)$	$\mathrm{N} 19-\mathrm{Ni} 2-\mathrm{N} 23$	$99.52(8)$
N5-Ni1-N3	$96.75(8)$	$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 23$	$79.07(8)$
N11-Ni1-N9	$78.90(8)$	$\mathrm{N} 19-\mathrm{Ni} 2-\mathrm{N} 13$	$91.66(9)$
N5-Ni1-N9	$96.76(8)$	$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 13$	$94.35(8)$
N3-Ni1-N9	$165.43(8)$	$\mathrm{N} 23-\mathrm{Ni} 2-\mathrm{N} 13$	$167.17(8)$
N11-Ni1-N1	$101.58(8)$	$\mathrm{N} 19-\mathrm{Ni} 2-\mathrm{N} 17$	$79.57(8)$
N5-Ni1-N1	$87.79(8)$	$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 17$	$165.64(8)$
N3-Ni1-N1	$79.31(8)$	$\mathrm{N} 23-\mathrm{Ni} 2-\mathrm{N} 17$	$90.67(8)$
N9-Ni1-N1	$95.82(8)$	$\mathrm{N} 13-\mathrm{Ni} 2-\mathrm{N} 17$	$97.57(8)$
N11-Ni1-N7	$92.87(8)$	$\mathrm{N} 19-\mathrm{Ni} 2-\mathrm{N} 15$	$166.75(8)$
N5-Ni1-N7	$78.57(8)$	$\mathrm{N} 21-\mathrm{Ni} 2-\mathrm{N} 15$	$98.11(8)$
N3-Ni1-N7	$91.25(8)$	$\mathrm{N} 23-\mathrm{Ni} 2-\mathrm{N} 15$	$90.70(8)$
N9-Ni1-N7	$96.73(8)$	$\mathrm{N} 13-\mathrm{Ni} 2-\mathrm{N} 15$	$79.25(8)$
N1-Ni1-N7	$162.44(8)$	$\mathrm{N} 17-\mathrm{Ni} 2-\mathrm{N} 15$	$91.98(8)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {i }}$	0.85 (2)	1.84 (2)	2.693 (3)	175 (4)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 7^{\text {i }}$	0.88 (2)	1.97 (2)	2.832 (3)	169 (3)
N6-H6 $* \cdots$ O5	0.86 (2)	1.94 (2)	2.788 (3)	169 (4)
N8-H8A \cdots O6	0.86 (2)	1.91 (2)	2.745 (3)	165 (3)
$\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.89 (2)	2.40 (3)	2.990 (3)	124 (3)
$\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{O} 3^{\text {ii }}$	0.89 (2)	2.22 (2)	3.028 (3)	152 (3)
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\text {ii }}$	0.84 (2)	1.96 (2)	2.792 (3)	169 (4)
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1$	0.87 (2)	1.84 (2)	2.674 (3)	161 (4)
$\mathrm{N} 16-\mathrm{H} 16 A \cdots \mathrm{O} 2$	0.85 (2)	1.94 (2)	2.723 (3)	154 (4)
$\mathrm{N} 18-\mathrm{H} 18 A \cdots \mathrm{O} 4^{\text {iii }}$	0.85 (2)	1.94 (2)	2.781 (3)	169 (4)
$\mathrm{N} 20-\mathrm{H} 20 A \cdots \mathrm{O} 3^{\text {iii }}$	0.87 (2)	1.86 (2)	2.728 (3)	175 (3)
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 7$	0.90 (2)	1.84 (2)	2.733 (3)	174 (3)
$\mathrm{N} 24-\mathrm{H} 24 A \cdots \mathrm{O}^{\text {iv }}$	0.84 (2)	1.99 (2)	2.788 (3)	158 (4)

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x,-y+\frac{5}{2}, z-\frac{1}{2}$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms on C atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom. H atoms on N atoms were refined with $U_{\text {iso }}(\mathrm{H})=0.08 \AA$ and $\mathrm{N}-\mathrm{H}$ distances in the range $0.84(2)-0.90(2) \AA$. The final electron-density maximum and minimum are closest to atoms H 39 and Ni 2 , respectively.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 2000); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

We sincerely thank the National Natural Science Foundation of China and Provincial Natural Foundation of Shaanxi for their support.

References

Atencio, R., Chacon, M., Gonzalez, T., Briceno, A., Agrifoglio, G. \& Sierraalta, A. (2004). Dalton. Trans. pp. 505-513.

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 3
A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.

Ferey, G. (2001). Science, 291, 994-995.
Fieselmann, B. F., Hendrickson, D. N. \& Stucky, G. D. (1978). Inorg. Chem. 17, 2078-2084.
Fortin, S. \& Beauchamp, A. L. (2001). Inorg. Chem. 40, 105-112.
Moulton, B. \& Zaworotko, M. J. (2002). Curr. Opin. Solid State Mater. Sci. 6, 117-123.
Ramirez, K., Reyes, J. A., Briceno, A. \& Atencio, R. (2002). CrystEngComm, 4, 208-212.
Sang, R. L., Zhu, M. L. \& Yang, P. (2002). Acta Cryst. E58, m172-m175.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SHELXS97, SHELXL97 and SADABS. University of Göttingen, Germany.
Tadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Toyoda, J., Tashiro, K. \& Nakasuji, K. (1999). Angew. Chem. Int. Ed. 38, 95-98.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

